home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Sprite 1984 - 1993
/
Sprite 1984 - 1993.iso
/
src
/
lib
/
m
/
expm1.c
< prev
next >
Wrap
C/C++ Source or Header
|
1988-07-11
|
5KB
|
159 lines
/*
* Copyright (c) 1985 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that this notice is preserved and that due credit is given
* to the University of California at Berkeley. The name of the University
* may not be used to endorse or promote products derived from this
* software without specific prior written permission. This software
* is provided ``as is'' without express or implied warranty.
*
* All recipients should regard themselves as participants in an ongoing
* research project and hence should feel obligated to report their
* experiences (good or bad) with these elementary function codes, using
* the sendbug(8) program, to the authors.
*/
#ifndef lint
static char sccsid[] = "@(#)expm1.c 5.2 (Berkeley) 4/29/88";
#endif /* not lint */
/* EXPM1(X)
* RETURN THE EXPONENTIAL OF X MINUS ONE
* DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
* CODED IN C BY K.C. NG, 1/19/85;
* REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
*
* Required system supported functions:
* scalb(x,n)
* copysign(x,y)
* finite(x)
*
* Kernel function:
* exp__E(x,c)
*
* Method:
* 1. Argument Reduction: given the input x, find r and integer k such
* that
* x = k*ln2 + r, |r| <= 0.5*ln2 .
* r will be represented as r := z+c for better accuracy.
*
* 2. Compute EXPM1(r)=exp(r)-1 by
*
* EXPM1(r=z+c) := z + exp__E(z,c)
*
* 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ).
*
* Remarks:
* 1. When k=1 and z < -0.25, we use the following formula for
* better accuracy:
* EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
* 2. To avoid rounding error in 1-2^-k where k is large, we use
* EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
* when k>56.
*
* Special cases:
* EXPM1(INF) is INF, EXPM1(NaN) is NaN;
* EXPM1(-INF)= -1;
* for finite argument, only EXPM1(0)=0 is exact.
*
* Accuracy:
* EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
* 1,166,000 random arguments on a VAX, the maximum observed error was
* .872 ulps (units of the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following constants.
* The decimal values may be used, provided that the compiler will convert
* from decimal to binary accurately enough to produce the hexadecimal values
* shown.
*/
#if defined(vax)||defined(tahoe) /* VAX D format */
#ifdef vax
#define _0x(A,B) 0x/**/A/**/B
#else /* vax */
#define _0x(A,B) 0x/**/B/**/A
#endif /* vax */
/* static double */
/* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */
/* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */
/* lnhuge = 9.4961163736712506989E1 , Hex 2^ 7 * .BDEC1DA73E9010 */
/* invln2 = 1.4426950408889634148E0 ; Hex 2^ 1 * .B8AA3B295C17F1 */
static long ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};
static long ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};
static long lnhugex[] = { _0x(ec1d,43bd), _0x(9010,a73e)};
static long invln2x[] = { _0x(aa3b,40b8), _0x(17f1,295c)};
#define ln2hi (*(double*)ln2hix)
#define ln2lo (*(double*)ln2lox)
#define lnhuge (*(double*)lnhugex)
#define invln2 (*(double*)invln2x)
#else /* defined(vax)||defined(tahoe) */
static double
ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */
ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */
lnhuge = 7.1602103751842355450E2 , /*Hex 2^ 9 * 1.6602B15B7ECF2 */
invln2 = 1.4426950408889633870E0 ; /*Hex 2^ 0 * 1.71547652B82FE */
#endif /* defined(vax)||defined(tahoe) */
double expm1(x)
double x;
{
static double one=1.0, half=1.0/2.0;
double scalb(), copysign(), exp__E(), z,hi,lo,c;
int k,finite();
#if defined(vax)||defined(tahoe)
static prec=56;
#else /* defined(vax)||defined(tahoe) */
static prec=53;
#endif /* defined(vax)||defined(tahoe) */
#if !defined(vax)&&!defined(tahoe)
if(x!=x) return(x); /* x is NaN */
#endif /* !defined(vax)&&!defined(tahoe) */
if( x <= lnhuge ) {
if( x >= -40.0 ) {
/* argument reduction : x - k*ln2 */
k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */
hi=x-k*ln2hi ;
z=hi-(lo=k*ln2lo);
c=(hi-z)-lo;
if(k==0) return(z+exp__E(z,c));
if(k==1)
if(z< -0.25)
{x=z+half;x +=exp__E(z,c); return(x+x);}
else
{z+=exp__E(z,c); x=half+z; return(x+x);}
/* end of k=1 */
else {
if(k<=prec)
{ x=one-scalb(one,-k); z += exp__E(z,c);}
else if(k<100)
{ x = exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
else
{ x = exp__E(z,c)+z; z=one;}
return (scalb(x+z,k));
}
}
/* end of x > lnunfl */
else
/* expm1(-big#) rounded to -1 (inexact) */
if(finite(x))
{ ln2hi+ln2lo; return(-one);}
/* expm1(-INF) is -1 */
else return(-one);
}
/* end of x < lnhuge */
else
/* expm1(INF) is INF, expm1(+big#) overflows to INF */
return( finite(x) ? scalb(one,5000) : x);
}